Algebra II 2023 Final Solutions

True or False Questions

Answer 'T(rue)' or 'F(alse)'. (You don't have to give a reason, but it might get you half a point if you are wrong.)

- 1. Every algebraic extension of a field is a finite extension. F-other way round
- 2. \mathbb{C} is the algebraic closure of \mathbb{Q} . F- \mathbb{C} contains $\overline{\mathbb{Q}}$, but also elements that are transcendental over \mathbb{Q} .
- 3. The non-zero elements of every finite field form a cyclic group under multiplication. T This was a theorem.
- 4. A group is solvable if and only if it has a composition series with simple factor groups. F 'Abelian', not 'simple'
- 5. Every finite abelian group with p dividing its order has exactly one Sylow p subgroup. T
- 6. For α and β algebraic and conjugate over a field F there is always an F-isomorphism of $F(\alpha)$ to $F(\beta)$. T
- 7. Any algebraic closure of $\mathbb{Q}(\sqrt{2})$ is isomorphic to any algebraic closure of $\mathbb{Q}(\sqrt{5})$. T- They are both closures of $\mathbb{Q}(\sqrt{2},\sqrt{5})$ and there are all isomorphic.
- 8. $\mathbb{Q}(\pi)$ is splitting over $\mathbb{Q}(\pi^2)$. T- It splits the irreducible $x^2 \pi^2$.
- 9. Every finite extension of every field F is separable over F.

	T or F	Comment/Reason
1		
2		
3		
4		
5		
6		
7		
8		
9		

Short Answers/Computations/Definitions

The following Definitions and Short Answer questions can be answered without work/explanation. (If you are unsure of your answer though, a short explanation might get part marks.)

- 1. Find a basis for $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over $\mathbb{Q}(\sqrt{2}+\sqrt{3})$. [1] They are the same field, as the $\operatorname{irr}(\sqrt{2}+\sqrt{3},\mathbb{Q})$ is x^4-10x^2+1 , so $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ has dimension 4 over \mathbb{Q} .
- How many primitive 10th roots of unity are there in GF(23)? None. 10 doesn't divide 22.
- 3. A series $H_0 < H_1 < H_2 < H_3$ (or in one case, the group H_3) is
 - subnormal if _____
 - normal if _____
 - composition if ______
 - principle if _____
 - solvable if _____

Damn guys! You should know the definitions! I know there are a lot, but... these classes are your job. This should be free marks.

- How many different composition series are there of Z₆₀. 12 This is the number of orders we can compose the factor groups Z₂, Z₂, Z₃, and Z₅.
- 5. How many Sylow 5-subgroups can a group of order 55 have? 1 or 11
- 6. An extension E > F of a field F is
 - algebraic if _____
 - *splitting* if ______
 - separable if _____
- 7. A field is perfect if _____. There was a theorem stating that the following fields are perfect:

^{8.} Give an example of algebraic extension $E \ge F$ that is separable but not splitting. (Give some justification for this.) The extension $\mathbb{Q}(\alpha)/\mathbb{Q}$, where $\alpha = \sqrt[3]{2}$ is not splitting because the other roots of $f(x) = \operatorname{irr}(\sqrt[3]{2}) = x^3 - 2$ are not in \mathbb{R} so not in $\mathbb{Q}(\alpha)$. But the roots are distinct, so the extension is separable.

Problems

Do one of problems 1 and 2 and one of problems 3 and 4.

1. For a subgroup H of a group G show that the normaliser

$$N[H] = \{ g \in G \mid gHg^{-1} = H \}$$

is a subgroup of G.

Solution

If a and b are in N[H] then $abH(ab)^{-1} = abHb^{-1}a^{-1} = aHa^{-1} = H$ so $ab \in n[H]$ showing that it is **closed**. As $1H1^{-1} = 1H1 = H$, N[H] contains the **unit**, and since for $g \in N[H]$ we have $g^{-1}Hg = g^{-1}gHg^{-1}g = H$ we have that N[H] has **inverse**. So it is a subgroup of G.

2. Show that no group G of order 80 is simple.

Solution

We have $80 = 2^4 \cdot 5$, so by the Sylow theorems there are 1 or 16 Sylow 5 subgroups. If there is only 1 then it is normal, and so G is not simple, so we may assume there are 16 respectively. These 16 subgroups can only intersect in the unit element, so together they contain 16(5-1) = 64 elements of order 5. This leaves only 16 elements for the Sylow 2-subgroups, and so, having size 16, there is only one of them. This group is then normal, and so G is not simple.

3. Let $E \ge F$ be an algebraic extension of fields. Give a definition/characterisation of $\{E : F\}$, [E : F], and G(E/F) (or |G(E/F)|) and place them, with a 'one or two line proof' (using results from class) for each inequality, in the following string:

Solution

- G(E/F): the group of F-automorphisms of E,
- $\{E:F\}$: number of images of E under F-automorphisms of the algebraic closure \overline{F} of F,
- [E:F]: the dimension of E as a vector field over F.

We have

 $|G(E/F)| \le \{E : F\} \le [E : F].$

The first inequality is from the Isomorphism Extension Theorem– every Fautomorphism of E extends to a F-automorphism of \overline{F} . The second uses the multiplicity of these values for intermediate extensions $E \ge K \ge F$, and for simple extensions $E = F(\alpha)$ comes from is because an F-isomorphism of $F(\alpha)$ is determined by the image of α , which must be a conjugate of α , so is at most the degree d of $\operatorname{irr}(\alpha, F)$, while $\{1, \alpha, \alpha^2, \ldots, \alpha^{d-1}\}$ is a basis of $F(\alpha)$ over F, so $[F(\alpha) : F] = d$.

4. Show that if α and β are both separable over F then $\alpha \pm \beta, \alpha\beta$ and α/β if $\beta \neq 0$ are all separable over F.

Solution

Assume that α and β are separable. By definition, $F(\alpha)$ and $F(\beta)$ are separable over F. Thus, in particular, $\{F(\beta) : F\} = [F(\beta) : F]$ and so all roots of $\operatorname{irr}(\beta, F)$ are distinct (as the index counts the distinct roots, and the dimension is the degree of $\operatorname{irr}(\beta, F)$). But then all roots of $\operatorname{irr}(\beta, F(\alpha))$, which divides $\operatorname{irr}(\beta, F)$, are also distinct, so $F(\alpha, \beta)$ is separable over $F(\alpha)$, and so over F. We had a theorem saying that an extension is separable if and only if all elements of the extension are separable, so the elements $\alpha \pm \beta, \alpha\beta$, and α/β of $F(\alpha, \beta)$ are separable over F.

Proofs

Choose **TWO** of the following theorems and prove them. (You may use other theorems that do not make these trivial, but state the theorem that you are using.)

1. For any prime p and integer $n \ge 1$, there is a finite field of order p^n .

2. (Second Isomorphism Theorem) Where H and N are subgroups of G and H is normal in G, $(HN)/N \cong H/(H \cap N)$.

Solu	ution	
Solu	Theorem 34.4 of notes.	

3. If G is a group and p is a prime dividing |G|, then G has an element of order p.

4. Let S be a set of automorphisms of a field E. The set E_S of all $a \in E$ that are fixed by all σ in S is a subfield of E.

